
Webhook Connector 
Download the PDF of this article. 

In this Article
Related Articles
Overview
FormAssembly’s Webhook Connector is a powerful tool that allows you to send data from your
forms to any web service in real-time. The flexibility it offers can be transformative for your
workflows, enabling seamless data transfers and automation that enhance the efficiency of your
processes.

Send workflow response data directly to any endpoint you control access to. Customize your
payloads to meet the needs of your endpoints using a user-friendly UI and an open-ended JSON
editor. This connector supports the following authentication types: API key, basic (username and
password), and OAuth 2. 

This connector is available as an Add-on for Team plans and higher when using FormAssembly
Workflow. Those interested in purchasing this Add-on should contact their Account Manager. If you
do not have an Account Manager, please contact our Sales Team.

Requirements
To use the Webhook Connector, a FormAssembly user must

be part of a Team plan or higher

purchase the Webhook Connector Add-on for their instance

have Content Management user permissions enabled for their login

specifically, the Webhook Automation Integration must be enabled for the user account

use the connector on a FormAssembly Workflow

Add the Webhook Connector to your Workflow

https://www.formassembly.com/contact/


Select Add Step and choose Connector

Select Webhook

Connector Configuration
Refer to our Workflow-native Connectors article for general configuration information.

Authorization Tab
Create a New Authorization

Edit an Existing Authorization

Manage or Delete Existing Authorizations

The Authorization dropdown lists all saved Webhook Connector authorizations from all
workflows owned by your user account. Select an existing authorization from the list or scroll to
the bottom to create a New Authorization.

https://help.formassembly.com/help/workflow-native-connectors


Create a New Authorization
Select New Authorization from the Authorization dropdown list

Enter a Name for the authorization

Select the Authorization Type required by the destination endpoint the connector is being configured for.

When the Authorization Type is selected, fields required for the selected authorization type will display

OAuth Authorization Steps
Enter the details for each required field

Client ID: The client identifier issued during the application registration process

Client Secret: The client secret issued during the application registration process

Authorization URL: The URL of the authorization server

Access Token URL: The URL to retrieve the access token

Scope: The scope of the access request. Separate multiple values with a space.

(optional) Refresh Token URL: The URL to retrieve the refresh token

A Redirect URL is provided for you to input into your Oauth service’s settings.

Click Authorize to view the Oauth verification screen of your Oauth service and complete any additional

steps required

Note: If the verification screen does not display properly, verify your Authorization URL and try again, or

contact your Oauth system administrator. 

Click Save to store and apply this authorization to the Webhook Connector 

Basic Authorization Steps
Enter the details for each required field

Username: The username required by the endpoint

Password: The password required by the endpoint

Note: This password value is masked in the UI for security

Click Save to store and apply this authorization to the Webhook Connector

API Key Authorization Steps



Enter the details for each required field

API Key Name: The API Key Name, to use as a header or query parameter

API Key Value: The API Key or Token required by the endpoint

Select an option from the Add to dropdown list that is appropriate for your endpoint

Header: Pass the API Key in the header

Query: Pass the API Key as a query parameter

Click Save to store and apply this authorization to the Webhook Connector

Configuration Tab
An Action is used to set the Parameters, Custom Headers, and Body of your request to your
endpoint. The connector may be configured to send multiple requests or send data to more than
one destination by using multiple Actions. 

Note: All Actions will use the same authorization information entered in the Authorization tab. If different

authorizations need to be used, additional Webhook Connectors may be added to the workflow. 

Parameters



Define the parameters for your Webhook Connector. 

Endpoint URL: This is where your form data will be sent. The Endpoint URL field should represent the full

URL and path of the endpoint receiving the Webhook Connector request.

Method: Choose from POST, PATCH, PUT, or GET, depending on the nature of your web service interaction.

POST: Send data to the server to create or update a resource; ideal for submitting forms or creating

new records.

PATCH: Partially update a resource on the server; use when only specific fields need to be changed.

PUT: Replace or update an entire resource on the server; use when you need to completely overwrite

existing data.

GET: Retrieve data from the server; typically used for reading information without making changes. In

this case, it will return whether the connector successfully interacted with the integration or not. If the

GET request encounters an error, the service is unavailable, and the workflow can use an alternate path

to avoid relying on a service that is currently down. 

Note: FormAssembly does not support retrieval of data coming back from GET requests from the Webhook

Connector at this time.

Custom Headers

Additional metadata needed for your request can be added to the Customer Headers section.
Choose to add fields, values, or aliases as part of the request headers. This optional section is not
required to configure or run the Webhook Connector.

Click Add Header to add a new custom header

Click the Source dropdown (the file icon) and select “Form Field” or “Value or Formula”

Form Field: Use the list to search for and select a form field from the forms included in the workflow.

Value or Formula: Enter a value as text or open the formula editor to use the formula builder to add

workflow aliases. 

Header Name: Enter a name for the header. 

Note: If a value has been added to the Source field, the Header Name field requires a value or the

configuration will display as incomplete.

Body

The Body section determines how data is structured and sent to the endpoint. Select the content
type (Form Data, URL-Encoded, JSON, or Raw) that best meets the data format needs of your
endpoint. This section is required for the Webhook Connector to be fully configured unless you are
using a GET method in the Parameters section.

Select a Content Type from the dropdown list

URL Encoded: Send data in key-value pairs encoded within the URL

Form Data: Send data in key-value pairs

JSON: Send a JSON object



Raw: Send raw text

URL Encoded and Form Data Steps
Select Add Another to add a line item to the body of the request

Selecting “Add all standard fields” will automatically add all form fields in the order that they appear on

the form to the body section. Note that this option leaves out file upload fields. 

Click the Source dropdown (the file icon) and select “Form Field” or “Value or Formula”

Form Field: Use the list to search for and select a form field from the forms included in the workflow.

Note: While files uploaded via file upload fields cannot be selected and submitted to the endpoint,

the file name, file size, mime type, path, URL, and file content can be sent and are selectable as

Form Fields

Value or Formula: Enter a value as text or open the formula editor to use the formula builder to add

workflow aliases. 

Field Name: Enter a name for the Field.

JSON Steps

When JSON is selected, you are presented with a JSON editor where you can manually enter and
configure JSON objects that refer to form data. This is a flexible and customizable option that
allows you to craft a JSON object that matches the data model that the endpoint system expects
to receive.

Enter text manually into the JSON editor 

Use the bar above the text editor to add FormAssembly workflow values.

Click the Source dropdown (the file icon) and select Form Field or Repeatable Element. 

When Form Field is selected, click into the search bar and search for form fields and form aliases

to add to the JSON object.

Note: Items added in this method should be wrapped by quotation marks to adhere to JSON

syntax requirements.

When Repeatable Elements is selected, view a list of repeatable elements (fields and sections) in

workflow forms to add repeating sections to the JSON object. Clicking on a repeatable element

adds a BEGIN and END repeatable element tag to the JSON editor which allows you to identify

exactly which data should be sent on each repeating element – data will be sent between the

BEGIN and END tags for each repeated item.

Note: 

Ensure JSON syntax is correct, otherwise, the connector may encounter an error.

Certain workflow aliases may break JSON formatting and will be unable to be parsed if JSON is

expected. Aliases such as Response Text and Response HTML may be unappeasable when inserted into

a JSON object. 

Raw Steps

Raw, similar to JSON, uses a text editor but sends raw text rather than a JSON object. Form fields,
values, and aliases can be added to the Raw text editor in the same method as the JSON editor.
One distinction though is that Raw can support aliases that would break JSON syntax such as



Response Text and Response HTML.

Note: When using calculated formulas inside Raw content bodies, wrap form fields with quotation marks to

ensure values are interpreted correctly. This can be especially important for date values.

Example: To return the year of a date input, you could add the following calculated formula:

@YEAR("%%form.api._step_1:tfa_1%%")

Note the use of quotation marks wrapping the form field value.

Error Logs
Logs for this connector indicate if something is a “client error” (400-level response) or a “server
error” (500-level response). It states the request method and URL endpoint, as well as the status
code and status code description. Errors may be further investigated on your endpoint system.

Example Error Log:



Connector error: Client error: `POST https://example-url.events/abc123` resulted in a `401 Unauthorized` response

Error Log Breakdown:

Connector error: [Error Type (Client/Server)]: '[Method] [Endoint URL]' resulted in a '[Status Code] [Status Co
de Description]' response


